Course Syllabus

Course from study programme for the cycle: 2023/2024

I. General Information

Course name	Python language programming
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	English

Course coordinator	dr Waldemar Suszyński
--------------------	-----------------------

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	15	VI	3
tutorial			
classes			
laboratory classes	15	VI	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Fundamentals of algorithms and programming	
	Object-oriented programming	

II. Course Objectives

- 1. Getting acquainted with the Python programming language.
- 2. Presentation of programming techniques in Python

III. Course learning outcomes with reference to programme learning outcomes

		Reference to	
Symbol	Description of course learning outcome	programme learning	
	·	outcome	
	KNOWLEDGE		
W_01	The student knows the syntax and semantics of the Python K_W01, K_W06		
	language.		
W_02	The student knows techniques of programming in Python.	K_W01, K_W06	
SKILLS			
U_01	The student is able to analyse scripts written in Python. K_U04		
U_02	The student is able to design scripts written in Python.	K_U08, K_U11,	
	K_U17		
U_03	The student is able to apply the techniques of object-oriented K_U08, K_U1		
	programming in Python.	K_U17	
SOCIAL COMPETENCIES			
K_01	The student is aware of his knowledge and skills and K_K01, K_K0		
	understands the need for lifelong learning. K_K05, K_K06		
K_02	The student is able to create effective projects using the	K_K01, K_K02,	
	Python language. K_K05,		

IV. Course Content

In this course, students gain skills in designing, developing, and improving computer programs using Python. Classes are conducted on the skillsforall.com platform and prepare for the following certification exams: PCEP: Certified Entry-Level Python Programmer and PCAP - Certified Associate in Python Programming. Additionally, after passing the required tests and completing projects, students can receive digital confirmation of their acquired skills (Digital Badge).

Program content:

- 1 Develop an awareness of programming languages
- 2. Python Data Types, Variables, Operators, and Basic I/O Operations
- 3. Boolean Values, Conditional Execution, Loops, Lists, and List Processing. Logical and Bitwise Operations
- 4. Functions, Tuples, Dictionaries, Exceptions, and Data Processing
- 5. Modules, packages and PIP
- 6. Characters, Strings, and Advanced Exceptions
- 7. Object-oriented programming
- 8 . Working with Files and Utilities

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
KNOWLEDGE			
W_01	Conventional lecture	Exam	Protocol
W_02	Conventional lecture	Exam	Protocol
SKILLS			
U_01	Laboratory classes	Test	Protocol
	design thinking		

U_02	Laboratory classes design thinking	Test	Protocol
U_03	Laboratory classes design thinking	Test	Protocol
SOCIAL COMPETENCIES			
K_01	Laboratory classes design thinking	Test	Protocol
K_02	Laboratory classes design thinking	Test	Protocol

Grading criteria, weighting factors.....

Graded pass of the classes based on a test result:

91 - 100% - 5,

81 - 90% - 4.5,

71 - 80% - 4.0,

61 - 70% - 3.5,

50 - 60% - 3.0.

0 - 49% -2.0

Detailed assessment rules are given to students with each subject edition.

VI. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture 15
	Laboratory 15
	Consultations 15
Number of hours of individual student work	30

VII. Literature

Basic literature

- 1. Teaching materials on skillsforall.com, netacad.com
- 2. Hetland, Magnus Lie, "Beginning Python From Novice to Professional", Berkeley, CA: Apress: Imprint: Apress, 2017.
- 3. Hetland, Magnus Lie, "Python Algorithms Mastering Basic Algorithms in the Python Language", Berkeley, CA: Apress: Imprint: Apress, 2014.
- 4.https://www.python.org/
- 5. https://en.wikibooks.org/wiki/Python_Programming (ebook)

Additional literature

- 1. H. M. Deitel, P. J. Deitel, J. P. Liperi, B. A. Wiedermann, "Python. How to programm.", Prentice Hall, New Jersey, 2002.
- 2. Hunt, John, "A Beginners Guide to Python 3 Programming", Cham: Springer International Publishing: Imprint: Springer, 2019.