Course Syllabus

I. General Information

Course name	Mathematics with statistics in biology
Programme	Biotechnology
Level of studies (BA, BSc, MA, MSc, long-cycle	BSc
MA)	
Form of studies (full-time, part-time)	part-time
Discipline	Biological sciences
Language of instruction	English

Course coordinator/person responsible dr Armen Grigoryan

Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture	30	I, II	4
tutorial			
classes	30	I, II	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites Knowledge of basic mathematics at the secondary school level

II. Course Objectives

To acquaint the mathematical apparatus necessary for further education.
To familiarize students with the basic tools of higher mathematics.
To educate students of precise formulation of problems and their solutions.

		-
Oursels at		Reference to
Symbol	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	The student has a basic knowledge of mathematics necessary	K_W02
	for further education.	
W_02	The student has a basic knowledge of statistics necessary for	K_W03
	describing and interpreting biotechnological processes.	
	SKILLS	
U_01	The student can solve basic problems in mathematical analysis	K_U17
	and linear algebra.	
U_02	The student is able to draw the correct inference on the basis of	K_U18
	data from different sources.	

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

Semester 1.

Functions. Sequences and series of real numbers. The Fibonacci sequence and phyllotaxis. Limit of a function at a point. The derivative and its applications. Extrema of functions. Graphing. Indefinite integral. The Riemann definite integral and its applications. Matrices and determinants. Systems of linear equations.

Semester 2.

Introduction to the theory of probability. Random variable and its distribution. Descriptive statistics: frequency distribution, histogram, median and mode, expected value and standard deviation. Introduction to the theory of inference: estimation and tests of hypotheses. Elements of the statistical analysis of multidimensional measurements. Correlation and regression.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
KNOWLEDGE			
W_01	Conventional lecture	I Semester, pass, II Semester	Evaluated test, protocol
		exam	
W_02	Conventional lecture	I Semester, pass, II Semester	Evaluated test, protocol
		exam	
		SKILLS	
U_01	Practical classes	Test	Evaluated test, protocol
U_02	Practical classes	Test	Evaluated test, protocol

VI. Grading criteria, weighting factors.....

I Semester

Classes Graded pass. 1 test – 100% 91% - 100% – 5.0 81% - 90% – 4,5 71% - 80% – 4,0 61% - 70% – 3,5 51% - 60% – 3,0 0% - 50% - 2,0 Lecture Pass. 1 test – 100% 51% - 100 % passed 0% - 50% not passed

II Semester

Classes Graded pass. 1 test – 100% 91% - 100% - 5.0 81% - 90% - 4,5 71% - 80% - 4,0 61% - 70% - 3,5 51% - 60% - 3,0 0% - 50% - 2,0 Lecture Exam – 100% 91% - 100% - 5.0 81% - 90% - 4,5 71% - 80% - 4,0 61% - 70% - 3,5 51% - 60% - 3,0 0% - 50% - 2,0

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	60
Number of hours of individual student work	40

VIII. Literature

Basic literature
1. Edwards C.H., Penny D.E., Calculus with analytic geometry, Prentice Hall, NJ 1998.
2. Freund J.E., Statistics, Prentice - Halll, INC., New Jersey 1970.
3. Sincich T., Statistics by example, Dellen Publishing Company, Santa Clara, California 1982.
Additional literature
1. Zill D. G., Calculus with analytic geometry, PWS Publishers, Boston, 1985.